欧式距离在高维空间中的效果如何(欧氏几何的发展)

作者:小玉 时间:2024-10-23 阅读:47

1. 欧式距离在高维空间中的效果如何,欧氏几何的发展?

欧几里得几何简称“欧氏几何”,是几何学的一门分科。数学上,欧几里得几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。

欧氏几何源于公元前3世纪。古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理(公设),在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。按所讨论的图形在平面上或空间中,又分别称为“平面几何”与“立体几何”。

其中公理五又称之为平行公设(Parallel Postulate),叙述比较复杂,并不像其他公理那么显然。这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利人波尔约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即“非欧几何”(non-Euclidean geometry)。

另一方面,欧几里得几何的五条公理并未具有完备性。例如,该几何中的所有定理:任意线段都是三角形的一部分。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。 因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。

欧式距离在高维空间中的效果如何(欧氏几何的发展)

2. 什么叫聚点?

聚点,也叫极限点,是点集拓扑上的一个概念,若x0的每个邻域上都含有除了它本身以外A的元素,则x0就是A的极限点。微积分实际上研究的是欧氏空间的分析性质(比如连续性、可导性、可积性),而欧氏空间是最常见的度量空间(带有度量的拓扑空间),所以聚点作为拓扑学的概念也很自然出现在微积分里。同时出现的有:开集、闭集、邻域(但是微积分中的邻域其实是拓扑学的球形邻域)、内点、闭包、导集、内部...

这些内容为什么出现在微积分里面是因为用他们可以分析和限定点集的结构和性质。比如连续性。一元微积分中连续性是用epsilon-delta语言定义:

如果你用邻域的语言翻译一下函数在x0连续的定义就是:设E为f的定义域,对任意f(x0)的邻域A,存在x0的邻域B,使得f(B交E)是A的子集(即任意B交E中元素的函数值在A中)。所以说,微积分的很多概念是可以用拓扑上的概念去表示的,进而我们对更一般的拓扑空间进行研究,其结果能自然推广到微积分上。而且用拓扑学的概念的话,很多一元和多元理论就没有界限了,甚至在所有形式的拓扑空间中都能得到统一,这样有助于我们统一的认识它们,比如多元函数连续性,如果你用邻域的语言描述的话,仍然是上面那句话。

在一元微积分中,我们可以避免使用拓扑学的术语是因为实轴的结构没那么复杂,开区间、闭区间这样的结构就很够用,但是到了高维中你不仅仅能画出圆、矩形这样的规则图形,还能画出各种奇怪的连通的图形,而且开和闭的概念也没有那么清晰了,所以引入聚点等概念去刻画就成了必要的了。有些人可能觉得,开闭什么的无所谓,但实际上开集和闭集是很重要的概念,它们都有特别的性质,作为一个很简单的例子,就是闭区间的连续函数有最值和介值性。这个在开区间上是没有的。这个性质也可以推广:有界闭集上的连续函数有最值和介值性。它依赖于实数的完备性,可以用:有界闭集S的任意无限子集必在S中有聚点去证明。

另外,虽然确实聚点可以分成边界点和内点。但边界点这个概念并不重要,边界点的定义为不是内点的聚点。大家或许很喜欢用图去形象的了解内点、极限点的关系:

但要知道的是,图形并不是只有长得那么中规中矩的图形,点集也并不一定要围成一个图形。如果用这样的图形去记忆什么点是什么点是不严谨的。

3. 德国数学家证明4维空间真实存在?

您说的这位德国数学家是指大家常说的“黎曼”先生吧?他的黎曼几何颠覆了2000多年来一直被奉为经典的欧几里得几何(简称欧氏几何)!

不同曲率面的三角形内角和 平面曲率为0,此时三角形内角和才是180度

例如:我们都知道在欧氏几何里三角形内角之和是180度,然而黎曼证明了在曲面上,正曲率面上(例如球面)的三角形内角和是大于180度,而在负曲率面(凹面)上三角形内角和却又小于180度;

因此,我们可以发现,欧氏几何定理适用于二维与三维空间,或者说是曲率为零(此时为平面),而黎曼几何探索了不包括时间维度在内的更高维度的几何原理,这些原理更贴近于我们所生活的这个世界的真理!

黎曼几何原理从数学上引导我们对看不见摸不着的三维空间之上的高维空间的理解与探索,例如我们看到“黎曼切口”示意图时,会产生虫洞真实性的推测:

两个面代表两个世界 通过黎曼切口成为捷径互通两个世界

然而,就眼睛看到的世界来说,我们都很难想象那个看不到的维度与世界究竟是怎么样的!我们很好理解长宽高与看得见,看不见的,与过去现在将来的组合情况!

只能打个比方吧:假设鱼的空间就是河里,它看到河里的水草在上下左右前后的晃动,那它看到的也是三维的,它会知道这是水流冲刷的缘故;河里还插着一面旗帜,它时常看到旗帜也是在晃动,但它就说不出为什么了,因为它从来没有出水面,不知道水面外边的世界是怎么样的!

再比如,有一天我们从河里捞出了一条鱼,过几天又放了回去,河里的鱼会以为这条鱼进入了另一个空间然后又回来了。

比如,画地为牢的故事,地平面的圈圈范围是不允许出的;可是,向上一跳就出来了,但是落回原地又不等于出牢,实际上已经出过,这就是三维看二维的启发,很简单了。

再比如,人类生活在地球,很久以来都以为地球是平面的,因为在视野与认知所及的范围内,我们看到的空间构架就是天圆地方,但当我们来到太空,再看我们的摇篮地球时,才惊奇的发现;地球是圆的,顿悟了。

所以,叫站得高看得远,欲穷千里目更上一层楼;在更高的维度再看我们的世界,许多因果关系或者逻辑都不再成立与适用:

我们会看到,不开冰箱门却取出了里面的好吃的;不扭开瓶盖,药片穿瓶而出等等不可思议的事情,却真真切切地发生了!

上面的例子举得也许不够恰当,只要不较真呢还是很通俗的;总的来看就是如果我们认知与掌握了更高维度,那么当今许多搞不清楚的事物届时就会变得简单。

如果,我们再加入时间这一维度,而假如时间又确实是随空间变化着的,那将是一个奇妙的世界,小伙伴们可以开动脑筋多思考,进入4维空间的人应该就是神吧,据说,天堂就在更高维度的空间里。

4. 能量可以转化为质量吗?

质量在一定条件下是可以转化为能量的。这个条件就是质量必须要受到某种激发而运动起来,才能转化成物质所带有的能量。比如你投出去一个篮球,你身体的肌肉收缩运动力就转化成了篮球在空中的运动动能了。篮球的质量,通过施加上人的激发作用力,才得以运动起来。运动力就是动能。而动能就是能量。

我们之所以难以弄清楚质量到低能不能转化成能量。原因就在于还没有把质量、能量与力之间的概念分清楚。

质量

质量是指一个物体上所含物质数量的多少。可以把它这样来理解:先对一个物体进行计算出拥有多少个电子。然后再用这个电子的质量去乘上这个物体的总电子数量。这就是这个物体由电子这个基本粒子所组成的全部质量。

力有两种存在形式。一种是引力。包括万有引力、质子与中子之间的核力、分子物之间的化学键合力;二是排斥力。排斥力是一个物体受到另一个物体给予的作用力激发而运动起来的力。

引力,表现比较单调。它仅仅是将分散的物质聚集到一块的作用力。比如在宏观领域里,万有引力使得天体之间构成一体化系统。如银河系、太阳系。在微观领域里,引力会导基础物质粒子随机化合,形成各种化合物。比如,结合成质子、中子、原子和分子等的结合力。从而构成各种化合物物体,甚至于是生物体。这就说明,引力直至物质之间的位置呈现相对静止。而只要是运动的物体,就必然带有能量。这样,物质就被转化成能量了。

引力,还会给物质带来运动作用力和静止作用力这两种作用力的表现。物质在处于运动作用力状态下,物体表现出能量;在处于静作用力状态下,物体就不表现出能量。就拿两块磁铁之间的吸引力来说。当两块异性磁铁在磁力线作用下,它们之间的位置开始互相靠拢,这两块磁铁的运动就带上能量(运动力)了。而当两块磁铁最终紧紧贴到一起后,它又不运动了。此时,这两块磁铁就处于静止状态,静止状态下的磁铁除保持静态引力作用以外,就不再带有能量了。因为它们不再运动了。但是,该物体虽然不带有能量,却仍然还带有物质之间的结合力。所以,不带有能量的物体不代表没有力的存在。

排斥力,比较复杂。排斥力可以向上追溯到从宇宙大爆炸发生开始。我们人类能够在地球上诞生和生活,都是因为宇宙大爆炸对我们的能量施舍。比如你身体上的能量(热),就是大爆炸给物质施加上的惯性运动力所带来的。这个力,通过无数次转化(接力转让),一直延续至今未断。比如地球上的化学物质在受到环境能量激发后化合成有机物的能量。有机物通过光能催化作用,再化合成(复制)植物能,植物又被猪吃了,猪身体带上了脂肪能。猪又被人吃了,人获得了猪的物质能量。或者我们既吃了猪肉又吃了植物。这样,猪肉和素菜所富含的物质能量就转化成了人体的能量了。这一切都源于化学能。如脂肪、糖。所以说能量是守恒的,能量在物质之间是可以转化(转让)的。不过,我们也不要忘了,引力也一直在产生作用。比如人体组织合成时,化学反应中的吸能以及分子得以形成的异性电荷吸引力等。

能量

能量是物质朝向某个方向运动的力。这是笔者分析总结出来的关于能量的定义。能量是物体运动的力。反过来说亦然,力可使物体运动出能量。在这句话中就包含着能量和力的转化概念。

总而言之,只要是物质运动起来,这个物质就带有了能量。而物质能够运动起来,就是受到了来自其他物体的力的作用(推动力激发)。所以质量通过力的激发就能够转化成能量。但是你千万不要误认为质量可以消失,消失了的质量变成了能量。

5. 相对论论文?

论文背景不给无法给出准确的材料,以下是相对论的基本概念,精选一些,希望对你有用。

【基本概念】

相对论(Principle of relativity relativism[5relEtivizEm] relativity[7relE5tiviti] theory of relativity)

相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯系参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论和量子力学是

现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。

狭义相对论最著名的推论是质能公式,它可以用来计算核反应过程中所释放的能量,并导致了原子弹的诞生。而广义相对论所预言的引力透镜和黑洞,也相继被天文观测所证实。

【提出过程】

除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命。文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题。

爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。

从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。

爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。距离也有了相对性。

如果设K坐标系中一个事件可以用三个空间坐标x、 y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由 x、y、z和t求出来。两个坐标系的相对运动速度和光速c是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。

利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在我们探索普遍的自然定律方面具有非常重要的作用。

此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=mc^2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。

对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对于相对论只字未提。

爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。他进而分析了光线在靠近一个行星附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”

1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。第一次世界大战延误了对这个数值的测定。1919年5月25日的日全食给人们提供了大战后的第一次观测机会。英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。他称赞道“这是人类思想史上最伟大的成就之一。爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。消息传遍全世界,爱因斯坦成了举世瞩目的名人。广义相对论也被提高到神话般受人敬仰的宝座。

从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高。特别是1974年9月由麻省理工学院的泰勒和他的学生赫尔斯,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有0.323天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室。经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果。由于这一重大贡献,泰勒和赫尔斯获得了1993年诺贝尔物理奖。

[编辑本段]

【狭义理论】

·狭义相对论的概念

马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。

狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。

四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。

四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。

相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。

·狭义论原理

物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。

伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。

著名的麦克尔逊·莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理:光速不变原理。

由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0.99倍光速,人的速度也是0.99倍光速,那么地面观测者的结论不是1.98倍光速,而是0.999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。

·狭义论效应

根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个惯性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。

相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。

尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。

由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。也就是说,时间进度与参考系有关。这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的"。这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。

爱因斯坦只用了几个星期就建立起了狭义相对论,然而为解决这两个困难,建立起广义相对论却用了整整十年时间。为解决第一个问题,爱因斯坦干脆取消了惯性系在理论中的特殊地位,把相对性原理推广到非惯性系。因此第一个问题转化为非惯性系的时空结构问题。在非惯性系中遇到的第一只拦路虎就是惯性力。在深入研究了惯性力后,提出了著名的等性原理,发现参考系问题有可能和引力问题一并解决。几经曲折,爱因斯坦终于建立了完整的广义相对论。广义相对论让所有物理学家大吃一惊,引力远比想象中的复杂的多。至今为止爱因斯坦的场方程也只得到了为数不多的几个确定解。它那优美的数学形式至今令物理学家们叹为观止。就在广义相对论取得巨大成就的同时,由哥本哈根学派创立并发展的量子力学也取得了重大突破。然而物理学家们很快发现,两大理论并不相容,至少有一个需要修改。于是引发了那场著名的论战:爱因斯坦VS哥本哈根学派。直到现在争论还没有停止,只是越来越多的物理学家更倾向量子理论。爱因斯坦为解决这一问题耗费了后半生三十年光阴却一无所获。不过他的工作为物理学家们指明了方向:建立包含四种作用力的超统一理论。目前学术界公认的最有希望的候选者是超弦理论与超膜理论。

[编辑本段]

【佯谬问题】

·时钟双生子佯谬

相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬。一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。在此只是用语言来描述一种最简单的情形。不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。我们的结论是,无论在那个参考系中,B都比A年轻。

为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇。这样处理的目的是略去加速和减速造成的影响。在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻。在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程。在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方。这是一个"超光速"过程。只是这种超光速与相对论并不矛盾,这种"超光速"并不能传递任何信息,不是真正意义上的超光速。如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较。火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间。B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了。在B看来,A先是比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了。重逢时,自己仍比A年轻。也就是说,相对论不存在逻辑上的矛盾。

[编辑本段]

【广义理论】

·广义相对论的概念

相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。

相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是3.14等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。

空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。

相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。

·广义论公式

根据广义相对论中“宇宙中一切物质的运动都可以用曲率来描述,引力场实际上就是一个弯曲的时空 ”的思想,爱因斯坦给出了著名的引力场方程(Einstein's field equation): <math>R_ - \fracg_ R = - 8 \pi {G \over c^2} T_ </math>

其中 G 为牛顿万有引力常数,这被称为爱因斯坦引力场方程,也叫爱因斯坦场方程。该方程是一个以时空为自变量、以度规为因变量的带有椭圆型约束的二阶双曲型偏微分方程。它以复杂而美妙著称,但并不完美,计算时只能得到近似解。最终人们得到了真正球面对称的准确解——史瓦兹解。 加入宇宙学常数后的场方程为: <math>R_ - \fracg_ R + \Lambda g_= - 8 \pi {G \over c^2} T_ </math>

·广义论原理

由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。其内容是,所有参考系在描述自然定律时都是等效的。这与狭义相对性原理有很大区别。在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。这就需要我们寻找一种更好的描述方法来适应这种要求。通过狭义相对论,很容易证明旋转圆盘的圆周率大于3.14。因此,普通参考系应该用黎曼几何来描述。第二个原理是光速不变原理:光速在任意参考系内都是不变的。它等效于在四维时空中光的时空点是不动的。当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。可以说引力可使光线偏折,但不可加速光子。第三个原理是最著名的等效原理。质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。它们是互不相干的两个定律。惯性质量不等于电荷,甚至目前为止没有任何关系。那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等)。广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。惯性质量联系着惯性力,引力质量与引力相联系。这样,非惯性系与引力之间也建立了联系。那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。在黎曼时空中,就是沿着测地线运动。测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。比如,球面的测地线是过球心的平面与球面截得的大圆的弧。但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。这样提出是为了解释行星运动。他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速。

6. mds怎么知道起始点坐标?

mapgis点编辑中有定位点功能,你把点输入在任意位置,然后点定位点,再点一下你输入的那个点,输入坐标就能定位了。

不过前提条件是你的图是校正过的如果是批量的通过坐标确定点的位置,要先把点坐标存成txt文本格式,然后在实用服务--》投影变换--》投影转换--》用户文件投影转换--》打开文件(打.txt格式的坐标文件)

用户投影参数:.txt格式的坐标投影参数结果投影参数:要投影到那幅图的参数“按指定分隔符”前面的点打上,设置分隔符(如果从Excel转成txt,分隔符为Tab键,即经度和纬度以及属性字段中间的分隔符),如果含有属性字段,在“属性名称所在行”选择属性名称的行,右下角选择属性在坐标点前或后。(注意:有属性行的,在指定数据起始位置的时候要从有坐标的行开始)填写X位于第几列,Y位于第几列(注意mapgis坐标和数学坐标是相反的)“设置点图元参数”为需要的子图是否需要投影转换,在“投影变换”那儿点一下,如果不需要,就把“不需要投影”前面的勾打上。

确定,退出软件提示保存,保存即可。

7. 科学史上第一门理论形态的产生?

欧几里得几何

欧几里得几何指按照古希腊数学家欧几里得的《几何原本》构造的几何学。欧几里得几何有时单指平面上的几何,即平面几何。本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何。高维的情形请参看欧几里得空间。

基本介绍

欧几里得几何简称“欧氏几何”,是几何学的一门分科。数学上,欧几里得几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。

欧氏几何源于公元前3世纪。古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理(公设),在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。按所讨论的图形在平面上或空间中,又分别称为“平面几何”与“立体几何”。

其中公理五又称之为平行公设,叙述比较复杂,并不像其他公理那么显然。这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基、匈牙利人波尔约阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即“非欧几何”。

另一方面,欧几里得几何的五条公理并未具有完备性。例如,该几何中有定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。

上一篇:电表箱接线(自行组装电箱怎么接线)

下一篇:暂无数据

猜你喜欢

腻子膏303(303净醛腻子是耐水腻子吗)

腻子膏303(303净醛腻子是耐水腻子吗)

资讯 2023-11-05 480
24v常开接近开关接线(接近开关接法)

24v常开接近开关接线(接近开关接法)

知识 2023-11-08 175
爱浪音响话筒无线连接(爱浪无线麦克风如何配对)

爱浪音响话筒无线连接(爱浪无线麦克风如何配对)

知识 2023-11-10 2601
装饰建材协会调解工作经验介绍(经过法院调解达成的协议具有法律效力吗)

装饰建材协会调解工作经验介绍(经过法院调解达成的协议具有法律效力吗)

资讯 2023-11-11 612
农村自建别墅150平米设计图(别墅花园150平算小吗)

农村自建别墅150平米设计图(别墅花园150平算小吗)

知识 2023-12-11 832
数据清洗&amp;预处理入门完整指南

数据清洗&amp;预处理入门完整指南

知识 2024-01-07 4056
排水管坡度计算方法(马桶排水管坡度要怎么留)

排水管坡度计算方法(马桶排水管坡度要怎么留)

资讯 2024-02-09 4071
前方施工 无需绕行 钢铁街地下雨水管道改造再次用到“顶管”技术

前方施工 无需绕行 钢铁街地下雨水管道改造再次用到“顶管”技术

知识 2024-02-24 1127
伸缩晾衣架利用了平行四边形的什么特点(农村在自家搭个晾衣架也是违建吗)

伸缩晾衣架利用了平行四边形的什么特点(农村在自家搭个晾衣架也是违建吗)

资讯 2024-04-20 4485
值得购买的CPU(值得购买的国产车)

值得购买的CPU(值得购买的国产车)

知识 2024-05-02 86
剩下的就是搞装修#记录建房过程

剩下的就是搞装修#记录建房过程

资讯 2024-05-08 877
明超家纺四件套(海门叠石桥家纺有哪些企业)

明超家纺四件套(海门叠石桥家纺有哪些企业)

知识 2024-05-26 4906
手动推拉大门(平移门怎么开启)

手动推拉大门(平移门怎么开启)

资讯 2024-06-17 3643
多名医生呼吁:老年人宁愿早上躺着不起,也千万不要多做这3件事

多名医生呼吁:老年人宁愿早上躺着不起,也千万不要多做这3件事

知识 2024-07-01 2752
重庆不锈钢雕塑加工厂家(重庆鑫润艺术品有限公司怎么样)

重庆不锈钢雕塑加工厂家(重庆鑫润艺术品有限公司怎么样)

资讯 2024-07-10 2977
圣象地板木地板怎么样(圣象多层实木地板怎么样)

圣象地板木地板怎么样(圣象多层实木地板怎么样)

资讯 2024-07-15 2086
南洋胡氏新中式(新中式现代中式有哪些设计感强的家具品牌)

南洋胡氏新中式(新中式现代中式有哪些设计感强的家具品牌)

资讯 2024-08-30 1034
淋浴房底座石材安装明细步骤图(大理石菱形地面安装方法)

淋浴房底座石材安装明细步骤图(大理石菱形地面安装方法)

资讯 2024-09-03 3653
开发商五证两书一表(房产三书五证一表指)

开发商五证两书一表(房产三书五证一表指)

知识 2024-09-04 2106
浙江工业大学材料与化工学院(你认为中坚九校中哪一所能率先进入前列)

浙江工业大学材料与化工学院(你认为中坚九校中哪一所能率先进入前列)

资讯 2024-10-01 2546